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Rhythmic Behavior Generated by Ensembles of
Neurons
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A method for analyzing the rhythmic behavior of biological neural networks is
developed. The mathematical foundation, based on group theory and graph theory,
is explicitly constructed, and examples are given to clarify the method. An
application is made to the brainstem circuitry of the vestibular system. The
physiological mechanisms involved in generating vestibular nystagmus are
characterized, and predictions are made about the phase relations of identified
vestibular neurons with eye movements. Comparisons with other models of
vestibular circuitry are discussed and suggestions are made for improvements to
previous models.

1. INTRODUCTION

The survival of any animal is dependent on its ability to recognize and
generate patterns. The spatial and temporal patterns of sensory information

impinging on the nervous system through many sensory modalities must be

encoded in neural activity patterns to be useful for further processing. Move-

ment is carried out by generating temporal patterns of motor neuron activity

that are spatially distributed to coordinate various combinations of muscle
groups. Sensorimotor organization can be characterized by the task of integ-

rating and transforming afferent neural patterns from sensory stimuli into

efferent neural patterns for motor output. The process of sensorimotor organi-

zation will not be thoroughly understood until neural activity patterns can

be recognized, their interactions identified, and the relationship between

patterned activity and behavior clarified.
Neural activity patterns are influenced by the anatomy, physiology, and

afferent input of each neural system and are distributed in space and time.
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Recurrent connections between different systems can interlock these patterns

like cogs in dynamical wheels. The development and application of appro-

priate mathematical methods to known properties of the nervous system is
needed to determine the patterns that each system will support, how the

patterns interact, and to identify the signature of such patterns that could be

detected with current experimental techniques.

The growing acceptance of the population coding paradigm of neural

computation [5] has brought with it an increasing interest in how coding

strategies are implemented in the brain. Synchronous activity of neurons
in a distributed population is a dynamic and efficient means for encoding

information in the nervous system [24]. Evidence of coherent, spatiotemporal

patterns is accumulating in various regions of the brain including the visual

cortex [1], the olfactory bulb [8], and the cerebellar cortex [19].

However, patterns of neural activity are only meaningful to the regions

with which they communicate. A difficulty with searching for patterns in
experimental data is that often the regularities are overlooked unless substanti-

ated by theory [6]. The underlying regularities that constitute a pattern are

easily washed out of complicated data by statistical averages unless the

statistics are tuned by theoretical predictions. An important duty of the theore-

tician is to classify the regularities of phenomena as an aid to experimentalists
in analyzing data from subsequent investigations.

The formalism introduced in [22] is able to select the output of any

functional network [10] that may be a subset of the anatomical network by

defining a rhythm to be a cycle, subject to the dynamics of the network,

where each cell changes state exactly twice. The method uses two-state

neurons and combines various cellular and synaptic properties to formalize
transitions between states. A wide range of network behaviors can be modeled

with this method to predict rhythmic behavior in dynamic biological networks.

When modeling small neural networks, there is often a tradeoff between

computational efficiency and biological details. Reducing the details of a

model is not incompatible with maintaining biological realism because

detailed biological models can be highly nonlinear in their predictions so
that a small error in setting the values of model parameters can lead to very

unrealistic predictions. The advantage of using efficient methods to predict

network behavior is that a wide range of conditions can be tested.

The formalism used in this article is able to scan the space of rhythms

and identify the possibilities that can be generated by a given neural circuit.

This approach is therefore independent of any specific choice of initial condi-
tions and can be thought of as a technique to identify the global attractors

of the network for rhythmic behaviors. A network may generate a large

number of rhythms so that a measure on the space of rhythms is required to

make comparisons and classify the variety of rhythmic output. The measure
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investigated in [21] guarantees that functionally similar patterns are in close

proximity of each other and clusters of rhythms form around dominant patterns

in rhythm space. The specific biological mechanisms responsible for differ-
ences between rhythmic classes (or clusters in rhythm space) can be identified

to reveal factors important for maintaining temporal patterns generated by

multiple pattern generators.

The inclusion of cellular properties along with synaptic connectivity

allows the formalism to predict temporal patterns generated by biological

networks [22]. By including physiologically realistic cellular properties such
as endogenous oscillation and postinhibitory rebound, a computationally sim-

ple model was used to predict the neural activity of dynamic biological

networks (an example such networks are discussed in [17]). The next step

in such an analysis would be to understand what biological mechanisms are

involved in generating rhythms, or under what conditions these rhythms

might be observed. Since the mechanisms responsible for each transition are
explicit in the formalism, the juncture points can be identified at which two

rhythms diverge to establish their identity in different behavioral classes.

The purpose of this article is to establish a mathematical foundation for

investigating the interactions among patterns of neural activity in sensorimotor

organization. In contrast to conduction-based modeling, the details of the
membrane conductances are discretized to greatly reduce the computational

load while maintaining the essence of relevant biological mechanisms. We

test for rhythmic behavior in biological neural networks, and develop a general

method to classify the possible patterns generated by a given network with

known synaptic connectivity and cellular properties. Upon defining a suitable

metric, the set of patterns form a metric space where functionally similar
patterns appear in clusters, and each cluster defines a functional mode of

the system.

In the next section, the mathematical fundamentals are explained and

basic definitions are given. The following section applies the formalism to

rhythmic behavior of the vestibular system, and analyzes bilateral neural

networks to provide a mechanism for the generation of vestibular nystagmus.

2. MATHEMATICAL METHODS

In well-studied biological networks, many of the transitions between

patterns of neural activity are already known in the form of synaptic or

cellular properties which induce changes in the firing patterns of cells in the
network. Conceptual machinery will be developed in the following to help

elucidate how these properties work together to generate the observed behav-

ior of the network. Traditional modelling studies develop complicated systems

of differential equations, and then probe the parameter space on a point-by-
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point basis to examine the behavior of the model. Here, we depart from

traditional methods by examining probabilities of change in the behavior

determined by regions of the parameter space.

2.1. Neural States and Transitions

The generation of temporal patterns in the central nervous system often

drive in motor circuits that require sustained bursts of action potentials to

control muscle activity. The neurons participation in these circuits utilize

slow responding currents to generate plateau potentials, long depolarized

states that produce a burst of action potentials [16]. The output states of

model neurons in the approach used here will be described as McCulloch±Pitts

neural units [20], cn, where n 5 1, . . . , N, and n is the number of neural

units in a given network. Each neuron has associated with it an indicator of

the membrane potential that takes its values in a binary state space, cÄ n P Z2,

where here the excited state (cÄ n 5 1) means that the neuron is firing a burst

of action potentials.

A set of N 2-state neurons, in combination with synaptic connections

and cellular properties, is called a network, and is denoted 1 5 {c1, c2, . . . ,

cN; 6, #}, where 6 is a set of synaptic connections and # is a set of cellular

properties. The two states of individual neurons will be represented by the

2-dimensional vectors

cn 5 F 1

0 G or F 0

1 G (2.1)

A neural state is defined by Getting [10] to be the spatial distributation of

activity within the network at any given moment in time. For example, if

the set of neurons are given as

n 5 H c1 5 F 1

0 G , c2 5 F 0

1 G , c3 5 F 1

0 G , . . . , cN 5 F 1

0 G J (2.2)

then neuron c1 is in a depolarized state, c2 is in a polarized state, etc. We

will abbreviate the above neural state as n n 5 [101 . . . 1]. The superscript

denotes which neural state so that in a network of N neurons, n 5 1, . . . ,

2N. This set of 2N neural states form the basis of a vector space, Vsp, that

represents all possible neural states.

Operators may now be defined that act on the neural states. For each
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element of 6 and # there corresponds an operator, 2, which transforms each

neural state into a linear combination of states, 2: Vsp ® Vsp,

2 n i 5 o
2N

j 5 1

aj n j (2.3)

The coefficients, aj , are weighting factors that will be used to set the relative

strengths of the synaptic and cellular properties. It should be noted that cellular

and synaptic properties may have different time scales, so the coefficients can

be time dependent. Since this is a collection of 2-state systems, the operators

will be defined in terms of the standard Pauli spin matrices as given in ref.

7; s 1, s 2, s 3, and the 2 3 2 identity matrix, 1. A convenient set of operators
from which to build the synaptic and cellular operators are given by

* 6 5 1±2 ( s 1 7 i s 2)

+ 6 5 1±2 (1 6 s 3) (2.4)

It should be noted that these operators do not commute so one must be careful

with their ordering when constructing synaptic and cellular operators. The

operator *+ may be considered as a hyperpolarization operator which turns

off a neuron in the excited state, and it is paired with * 2 which depolarizes
resting a neuron:

* 1
n [c1 . . . cn 2 1 1 cn+1 . . . cN] 5 [c1 . . . cn 2 1 0 cn+1 . . . cN]

* 2
n [c1 . . . cn 2 1 0 cn+1 . . . cN] 5 [c1 . . . cn 2 1 1 cn+1 . . . cN] (2.5)

The other operators are projection operators which measure whether a neuron

is in an excited or resting state:

+ 1
n [c1 . . . cn 2 1 1 cn+1 . . . cN] 5 [c1 . . . cn 2 1 1 cn+1 . . . cn]

+ 2
n [c1 . . . cn 2 1 0 cn+1 . . . cN] 5 [c1 . . . cn 2 1 0 cn+1 . . . cN] (2.6)

Suppose there is a synaptic connection between neurons m and n in the

network N where cm represents a presynaptic cell cm represents a postsynaptic

cell. One may then define the following synaptic operators:

x Inhibitory: SI
mn 5 smn

I * 2
n + 1

m

x Excitatory: SE
mn 5 smn

E * 1
n + 1

m

x Gap junction: SG
mn 5 smn

G (* 1
n + 1

m 1 * 2
n + 2

m 1 * 1
m+ 1

n 1 * 2
m+ 2

n )

x Rectifier junction: SR
mn 5 smn

R (* 1
n + 1

m 1 * 2
n + 2

m )
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For example, if the synapse is inhibitory, then the operator acts on neural

states as:

SI
mn[c1 . . . cm 2 1 1 cm+1 . . . cn 2 1 1 cn+1 . . . cn] 5 smn

I [c1 . . . cm 2 1 1 cm+1 . . . cn 2 1 0 cn+1 . . . cN]

S I
mn[c1 . . . cm 2 1 1 cm+1 . . . cn 2 1 0 cn+1 . . . cN] 5 0

SI
mn[c1 . . . cm 2 1 0 cm+1 . . . cn . . . cN] 5 0 (2.7)

The real coefficients smn
I , smn

E , smn
G , and smn

R are useful to assign the strength
of the mechanism represented by the operator, and these coefficients may be

time dependent. The first two of the above operators are commonly associated

with chemical synapses with time courses that are longer than the second

two which represent electrical synapses. At the first stage of a rhythmic

analysis, it is customary to set all of the operator coefficients to unity.
In a biological neural network, membrane currents may cause neurons

to terminate a burst of action potentials spontaneously after a period of time,

or remain tonically active. A third possibility is that a neuron may oscillate

between quiescence and bursts. To each cell in the network we assign one

of the following operators to reflect these properties.

x Plateau termination: CPT
n 5 cn

PT*
2
n

x Tonic Activity: CTA
n 5 cn

TA* 1
n

x Endogenous oscillations: CEO
n 5 cn

EO(* 1
n 1 * 2

n )

One more cellular property plays a central role in many pattern generating

networks. If a neuron is in a resting state and is concurrently subjected to a

inhibitory current, often it will adapt to the added current, thus holding the

membrane potential at a preferred value. If the inhibitory current is then

removed, the cell may rebound to an excited state. This phenomenon is called
postinhibitory rebound [3] and is assigned the following operator:

x Postinhibitory rebound: CPIR
mn 5 cmn

PIR* 1
n + 2

m

There are two indices because it is presently assumed that inhibition is a

result of a postsynaptic inhibitory current, and the operator + 2
m insures that

the presynaptic cell is no longer in an excited state. This operator can only

be applied in combination with an operator that silences the presynaptic

neuron (cm) which has been inhibiting the postsynaptic neuron (cn).
In order to use these operators to analyse a biological neural net one

takes a sum of all the synaptic and cellular properties and applies the resultant

operator to any neural state. To show how this procedure is carried out in

practice, we will take the not-so-realistic (though standard) example of two
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mutually inhibitory neurons (Fig. 1A). The operator for this network takes

the form:

2 5 SI
12 1 SI

21 1 CPIR
12 1 CPIR

21 1 CPT
1 1 CPT

2 1 CPIR
12 CPT

2 1 CPIR
21 CPT

1 (2.8)

This operator acts on the neural states [c1, c2] as follows:

2[11] 5 (s12
I 1 c2

PT)[10] 1 (s21
I 1 c1

PT)[01]

2[10] 5 c1
PT[00]

2[01] 5 c2
PT[00]

2[00] 5 c21
PIR[01] 1 c12

PIR[10] (2.9)

Thus, a list is generated of the transitions from each neural state under the

influence of the connectivity and cellular properties. The probability of each
transition is the coefficient divided by the sum of all the coefficients included

in the sum. For instance, the transition probability for [11] ® [10] is

3([11] ® [10]) 5
s12

I 1 c2
PT

s21
I 1 c2

PT 1 s12
I 1 c1

PT

(2.10)

Physiological data may be used to set the values of these variable to determine

the transition probabilities of each transition.

2.2. Rhythms and Rhythmic Patterns

The application of the synaptic and cellular operators on states of the

network N generates a set of transitions between neural states. Each transition

is denoted by ( n i, n f )M , where n i is the initial state of the transition, n f is the

final state, and M P {I, E, G, R, PT, TA, EO, PIR} is the mechanism
responsible for the transition. The set % 5 {( n i, n f )M , for any M} is formed by

the set of unique directed edges such that the specification of the mechanism is

suppressed. Combining this set with the set of neural states, 9, forms the

transition graph of the network, G(9, %). The transition graph for the half-

center oscillator is shown in Fig. 1B.

Fig. 1. Half-center oscillator. (A) Network of two neurons with mutual inhibitory synaptic

connections. (B) Transition graph of the half-center oscillator with the two types of transitions:

Plateau termination (PT) and postinhibitory rebound (PIR).
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An important subgraph of G(9, %) for the study of rhythmic behavior

is the graph that is generated by introducing current thresholds for the neurons

of the network, and eliminating those transitions that violate a rule based on
the sum of currents in each cell [20]. For instance, if the network is in a

state where one of the neurons is heavily inhibited by synaptic currents, then

it is biologically implausible that the cell would undergo a transition from a

silent state to firing a burst.

If postsynaptic currents are labeled by integers, in P Z, for each neuron

n, then in . 0 represents an excitatory and in , 0 an inhibitory postsynaptic
current. A value C may be assigned to each type of transition such that C .
0 implies that the transition in which a neuron changes from an inactive to

an active state and C , 0 otherwise. A transitions is eliminated by the

synaptic constraint if

C 1 o
n

in $ u , for C , 0

C 1 o
n

in # 2 u for C . 0 (2.11)

where u is a threshold and the sum is over all active presynaptic neurons.
In order to study complicated rhythms in all but the simplest of networks,

we will need a notation to keep track of cycles on the transition graph and

aid in the classification of multiple rhythms. The definition of rhythm will

be formalized using techniques found in [4], resulting in a method to generate

the functional rhythms of a network. The first step is to define what is meant
by a path on the transition graph (for an alternative approach, see [13]). Let

%* be the set of finite sequences of elements of % juxtaposed; %* 5
{( n f1 ) n i1)( n f2 ) n i2)( n f3 ) n i3) ? ? ? ( n fk ) n ik) : ( n fa ) n ia) P %, a P Z+} ø e , where e
represents the null sequence. A path on the transition graph is an element

of %* where the transitions are contiguous so that n fa 5 n ia 1 1 for all juxtaposed

elements. We now need a function that acts on elements of %* which will
count how many times each cell of the network has changed state, and what

the nature of that change is. Let N be the number of neurons participating

in the functional network. We define the label function l: %* ® ZN 3 ZN:

If ( n f ) n i) P %, where n i 5 [cÄ 1 . . . cÄ N], and n f 5 [cÄ 81 . . . cÄ 8N], then l( n f ) n i) 5
(b 1

1 . . . b 1
N ; b 2

1 . . . b 2
N ), where

b 1
n 5 H 1 if c8n 2 cn 5 1

0 otherwise

b 2
n 5 H 1 if c8n 2 cn 5 2 1

0 otherwise
(2.12)
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The function l is extended to all of %* as follows:

l(S1 S2) 5 l(S1) 1 l(S2) (2.13)

for S1, S2 P %* and ` 1 ’ is vector addition in ZN. Since the transition operators

have been defined to allow only one neuron to change with each transition,
the function l given by Eq. (2.12) maps elements of % to vectors with all

components equal zero except one that is unity.

We next introduce a path algebra which is a set P with two binary

operators, a join operation and multiplication obeying the rules below [4].

For our present purposes, the set P is the power set of %*; the set of sets of

elements of %*. The binary operators are defined as follows:

x The join operation ( Ú ) is idempotent, commutative, associative, and

is taken here to be set union.

x Multiplication ( ? ) is associative, and distributive over Ú , and is defined

here for S1, S2 P P by concatenation:

S1 ? S2 5 { p 1 p 2: for all p 1 P S1, p 2 P S2 and

l( p 1 p 2) 5 (b 1
1 . . . b 1

N ; b 2
1 . . . b 2

N ), b 6
n # 1 for all n} (2.14)

This rule allows only two changes of state on the path for each neuron. A

path algebra has, by definition, a zero element which is the empty set:

f Ú S 5 S for all S P P (2.15)

f ? S 5 f 5 S ? f for all S P P

In addition, a path algebra contains a multiplicative identity element which
is the null path e P %:

e ? S 5 S 5 S ? e for all S P P. (2.16)

We may now state the definition of an N-rhythm as an 2N-cycle of transitions

m 5 ( n f1 ) n i1)( n f2 ) n f1) ? ? ? ( n i1 ) n i2N) (2.17)

such that

l( m ) 5 (1, . . . 1; 1, . . . , 1) (2.18)

Every graph G 5 (9, %) with h vertices and the path algebra P has an
associated adjacency matrix, A 5 [aif] where i, f 5 1, 2, . . . , h 5 2N and

the entries are defined by

aif 5 H {( n f ) n i)} if ( n f ) n i) P %
f if ( n f ) n i) ¸ %

(2.19)
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The adjacency matrix is useful for calculating paths on the graph G. The

definition of the path algebra given above is designed to calculate rhythms

of a network. Matrix multiplication is defined in terms of the path algebra

in analogy to matrices of real numbers where sum are replaced by the join

operator so that the result is a matrix whose elements are members of P. By

taking powers of the matrix Ak, the entries along the diagonal represent k-

cycles satisfying the rule that no neuron has changed state more than twice.

Thus, the set of N-rhythms containing the neural state n i is given by the ith

entry on the diagonal of the matrix A2N:

Ri 5 ~
j1, j2,..., j2N 2 1

{( n j1 ) n i)} ? {( n j2 ) n j1)} ? ? ? {( n j2N 2 1 ) n j2N 2 2)} ? {( n i ) n j2N 2 1)} (2.20)

where Ú j1, j2,..., j2N 2 1 represents the join of all values of the indices.

The set R of all N-rhythms generated by a network is given by the join

R 5 Ú iRi. Because the join operator is idempotent, the duplicate cycles drop

out of the series. Two rhythms are considered equivalent if the sequences of

their neural states are identical. The maximum number of possible rhythms

that can be generated by a network containing n neurons can be computed

by considering that each state in the transition graph shares an edge with

exactly N other states. Each rhythm of the network is a 2N-cycle of transitions

because each transition has a label with a single 1 in the appropriate position.

Thus, each rhythm can be associated with a cycle of 2N such labels, and in

fact, there is a one-to-one correspondence between the rhythms in the given

network and the cycles consisting of all 2N labels that have a single 1. To

count these cycles, the number of orderings if these labels is equal to the

number of permutations of 2N elements (2N!). Since there is a symmetry of

rotations through the cycles, the final answer of (2N 2 1)! rhythms is arrived

at by dividing out the symmetry.

Most networks will generate a large number of rhythms so it is useful

to have a means of comparing different rhythms of a fixed number of neurons.

By comparing similar rhythms we will then be able to classify the patterns

generated by a given network into groups that reflect a similar property. The

functional similarity relevant to many neural systems is the sequence of bursts

generated by the composite neurons. Comparisons between rhythms can be

accomplished by introducing a distance function onto the set of rhythms to

quantify the functional differences between them. For each rhythm, there is

a sequence of 2N transition vectors, pi P ZN
2 , i 5 1, . . . , N, which are N-

tuples of zeros and a 1 in the location of the neuron that changed state. Note

that different sequences of neural states may have the same sequence of

transition vectors so that the transition vectors do not uniquely determine a

rhythm. It is often convenient to write rhythms with the transition vectors
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inserted between the states as in the following where we show only three

states of a rhythm,

? ? ? [. . . cÄ m . . . cÄ n . . .]pm[. . . cÄ 8m . . . cÄ n . . .]pn[. . . cÄ 8m . . . cÄ 8n . . .] ? ? ? (2.21)

We may transform this rhythm into another by transposing the vectors pm

and pn, changing the intervening neural state accordingly;

? ? ? [. . . cÄ m . . . cÄ n . . .]pn[. . . cÄ m . . . cÄ 8n . . .]pm[. . . cÄ 8m . . . cÄ 8n . . .] ? ? ? (2.22)

Since these two rhythms differ by only one neural state, it is natural to

consider them to be neighbors in the set of rhythms. Thus, distance in rhythm

space is defined as: The distance between two rhythms is the minimum number
of adjacent transpositions of transition vectors that transforms one rhythm
into the other [22]. It should be stressed that this kind of distance differs

from the Hamming distance which measures the overlap between two strings

of binary numbers. All rhythms that are neighbors in rhythm space would

have a Hamming distance of two.

The reason for choosing this definition is that it implies that two neigh-

boring rhythms have a strong functional similarity. Except for where they
differ, they share all of the same transitions, and thus the same temporal

pattern. The difference is the detour through the transition graph where their

paths separate for a single neural state in the sequence, and then rejoin after

the following transition. One is often interested in the activity of motor

neurons, or neurons that drive motor neurons, so that similarities in rhythm
space translates into similarities in movement patterns of the organism.

An interesting example is provided by the network shown in Fig. 2A

[18, 14]. Since this network is anatomically symmetric under cyclic rotations

of the neurons, we may use the dynamical equivalences classes [11] in

addition to the functional classification presented here. This is also a good

example to demonstrate the variation of rhythmic behavior under changes of
cellular properties.

Let the network be defined by 14 5 {1, 2, 3, 4; 6, #} where

6 5 {SI
1,4, SI

4,3, SI
3,2, SI

2,1, SI
1,3, SI

3,1, SI
2,4, SI

4,2} (2.23)

and

#TA 5 {CTA
1 , CTA

2 v, CTA
3 , CTA

3 } (2.24)

Without the application of constraints, this network generates 1715 rhythms.
This number should be compared with the maximum of 7! 5 5040 rhythms

that can be generated by a 4-cell network. Since the network is highly

inhibitory, constraints will greatly reduce this number. Under the synaptic

constraint with the threshold u 5 0, the network generates one rhythm as
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Fig. 2. Model rhythm-genera ting network. (A) Network of four neurons with inhibitory synaptic

connections. (B) The rhythm generated by the network under synaptic constraints ( u 5 0) and

each neuron is tonically active. (C) Representative rhythms of the network driven by postinhibi-

tory rebound (see text for details). Solid lines between rhythms indicate a distance of one in

rhythm space and broken lines indicate a distance of two.

shown in Fig. 2B. Note that the rhythm is symmetric uncer cyclical permuta-
tions of the neurons.

Instead of allowing the network to be driven by tonically active neurons,

we may investigate the results of postinhibitory rebound as a driving mecha-

nism. In this case we let the set of cellular properties be described by the set,

#PIR 5 {CPT
1 , CPT

2 , CPT
3 , CPT

3 , CPIR
1 , CPIR

2 , CPIR
3 , CPIR

3 } (2.25)

This these cellular properties, the network generates 204 rhythms without
constraints and, if constrained with u 5 0, then we find 16 rhythms that fall

into 12 clusters. Due to the symmetry of the network, we may classify these

clusters into 5 dynamical equivalence classes [11, 12] of whose members

are equivalent under cyclical rotations of the neurons. Representatives of

each equivalence are shown in Fig. 2C, where rhythms 1a and 1b form a

cluster of two. Classes 2 and 5 have only one member, classes 1 and 3 have
4 members each, and class 4 has 2 members.

In the above example, we have defined clusters in rhythm space to be

sets of rhythms that fill contiguous regions with a neighborhood of one

surrounding each rhythm. In larger networks, it becomes advantageous to
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expand the neighborhood to larger distances between neurons when defining

clusters. This is because in large networks there become so many ways two

rhythms may differ that functional similarity may be preserved over greater
distances in rhythm space. The rhythms of Fig. 2C are marked for both

nearest neighbors (solid line between 1a and 1b) and rhythms with a distance

of two (broken lines) between such as rhythms 3 and 5. With the larger

neighborhood, all of the rhythms fit into one cluster so that no classification

can be made on the basis of functional distance.

3. APPLICATION: VESTIBULAR NYSTAGMUS

The method described in this article has been previously used to predict

the temporal pattern generation of small biological networks in invertebrate
preparations [22, 21]. This approach to temporal pattern generation is also

useful for vertebrate system with large numbers of neurons arranged in parallel

circuits because of the probabilistic interpretation of the clusters in rhythm

space. In a single small neural network, a cluster of rhythms is interpreted

as variations on the rhythm that the network generates, and if there are many
similar variations, a large cluster, that there are many reinforcing mechanisms

at work to stabilize the temporal pattern.

In an ensemble of neurons where there are many parallel neural modules,

then the clusters in rhythm space represent similar rhythms that occur simulta-

neously. These types of parallel neural modules are ubiquitous in the central

nervous systems of vertebrates. The rhythm space method has successfully
predicted the synchrony of cerebellar climbing responses due to gap junctions

in the inferior olive [23]. In the following, the circuitry in the brainstem that is

involved in generating vestibular nystagmus is investigated, and the essential

elements of the circuit are revealed.

3.1. Rhythmic Patterns of Bilateral Vestibular Circuitry

The activity of neurons in the vestibular nuclei drive ocular-motor neu-

rons to stabilize gaze during movements of the head. A sudden change of

the input level from the vestibular end-organs, such as a complete loss of

input following a lesion in the eighth nerve containing primary vestibular
afferents, causes a rhythmic movement of the eyes, or nystagmus. Most

studies concerning vestibular nystagmus treat the two phases of the behavior

separately. Here we explore the possibility of brain stem circuitry that is

responsible for generating the full rhythm.
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In order to investigate whether a bilateral circuit exists that contributes

to the maintenance of vestibular nystagmus, we evaluate the rhythmic patterns

supported by the circuit consisting of the vestibular nuclei carrying head
velocity information, the trochlear nucleus, and the inferior oblique division

of the oculomotor nucleus. This circuit has been known to be instrumental

in producing oblique nystagmus [2].

The space of rhythms for this vestibular circuit (Fig. 3A) was scanned

to determine the potential rhythmic behavior that it could sustain. Functionally

similar rhythms are manifest as the most prominent clusters in rhythm space.
Rhythm space analysis shows the kind of rhythmic behavior that is dependent

on the specifics of the functional networks, and which networks, if any, are

common to several functional states of the system.

Although the unilateral circuit given in ref. 2 does not support rhythmic

behavior, a bilaterally symmetric version of it generated two clusters of

rhythms shown in Fig. 3B. The rhythm clusters appear when there is an
asymmetry between the right and left primary afferent vestibular input. In

the clusters, there is an asymmetry in the length of activation of the neurons

driving the inferior oblique motor neurons. This asymmetry corresponds to

and contributes to the asymmetry of the fast phase verses the slow phase in

nystagmus. The two rhythm clusters show a difference in motor neuron
phasing (Fig. 3C).

Fig. 3. Rhythmic patterns supported by a bilateral vestibular circuit are responsible for oblique

nystagmus. The circuit (A) is the bilaterally symmetric version of the schematic diagram given

in ref. 2 describing the pathways responsible for oblique nystagmus. The circuit supports two

rhythm clusters (B). One cycle of the rhythm is shown in each case, with increasing activity

being indicated by darker shading. Neurons of the right (left) medial nucleus (R(L)M) and the

right (left) superior nucleus (R(L)S) are driven by the eight nerve (VIII). These neurons interact

through interneurons found in the right (left) medial nucleus (R(L)MI). The rhythms of the

vestibular nuclei drive the left trochlear (LTRO) and right inferior oblique (RIO) motor neurons.

The asymmetry between RS and LS contribute to the difference between the fast phase and

slow phase of nystagmus. The two rhythm clusters have a slight difference in motor neuron

phasing, as shown in (C).
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Fig. 4. The essential circuitry for generation of the vestibular nystagmus. (A) The bilateral

circuit in Fig. 3A without the follower motor neurons. Unilateral input from the left eighth

nerve (VIII) excites secondary neurons of the left medial (LM) vestibular nucleus. An excitatory

projection of these neurons crosses the midline and makes contact with interneurons of the

right medial vestibular (RMI) nucleus that in turn inhibit the secondary neurons of the right

medial nucleus (RM) that receive excitatory input from the right eighth nerve, but that input

is absent in this case. These neurons send an excitatory projection across the midline to

interneurons in the left medial (LMI) nucleus that inhibit the LM neurons. (B) The cluster in

rhythm space generated by the circuit in (A) contains 7 rhythms. Without vestibular input, the

only way for the RM neurons to fire action potentials is by rebounding after release from

inhibition by the RMI neurons. Thus, without postinhibitory rebound, no rhythms are generated

by the circuit. (C) The bilateral model of Galiana and Oterbridge (1984). Neurons of the left

(right) vestibular nuclei (L(R)V) inhibit neurons of the left (right) abducens nucleus (L(R)A),

that inhibit motor neurons of the left (right) oculomotor nucleus (L(R)O). Excitatory connections

are made across the midline. The self excitation of the LV and RV neurons represent efferent

copy. To generate rhythmic oculomotor behavior, such as vestibular nystagmus, the circuit

requires inhibitory interconnections within the vestibular nuclei.

More recently, a bilateral model by Galiana and Oterbridge (1984) based

on physiological data has proven successful for predicting the linear dynamics

of the slow phase of vestibular nystagmus [25, 16]. Although this bilateral

model [9] is presently considered as the standard in bilateral modeling of

the brainstem circuitry responsible for the dynamics of vestibular nystagmus,
a rhythm space analysis finds that no rhythms are generated by this model

without modification.

The necessary modification are found upon closer inspection of the

bilateral version of the Baker and Berthoz (1974) model. The essential pattern

generating circuit is shown in Fig. 4A, where the other neurons in the previous

figure only follow the activity of this circuit. One cluster in rhythm space is
generated by this circuit, as shown in Fig. 4B. A comparison with the bilateral

circuit given in Smith and Galiana (1991) reveals the missing element.

Although there is a recurrent excitatory input to the vestibular nuclei represent-

ing ª efferent copy,º the missing internal detail within the vestibular nuclei
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lacks inhibitory interneurons. These interneurons provide essential hyperpo-

larization in the rhythmic model so that rebound properties of other neurons

in the vestibular nuclei drive the rhythmic cycle of the vestibular nystagmus.

4. DISCUSSION

This article has developed a method to analyze rhythmic patterns that

are generated by neural circuits. The activity of a network is represented by

neural states that are capable of transitions to a finite set of other states.
Cycles on the graph of transitions are used defined rhythms that represent

the temporal activity patterns of neural circuits. This method can be used to

predict the rhythmic behavior of small networks found in invertebrates [22,

21] or ensembles of neurons found in vertebrates [23]. The difference is in

the interpretation of the rhythm clusters generated by the method.

The analysis of brainstem circuitry responsible for vestibular nystagmus
reveals the utility of this approach in the study on the neural basis for motor

behavior. Linear approaches to vestibular reflexes do not predict the switching

from the slow phase of the nystagmus to the fast phase. But here the vestibular

nystagmus is treated as a whole rhythm and physiological mechanisms of

the switching between phases are revealed. Although each phase of the
nystagmus recruits different subsystems of the visual system, the imbalance

of vestibular input that is known to be responsible for nystagmus is shown

to involve circuitry within the vestibular nuclei to switch between each phase.

A deeper analysis would require further data to estimate the transition

probabilities and the likelihood of each rhythm and cluster. This further

analysis would predict the neural activity that would be recorded in the
vestibular nuclei following a lesion to the eighth nerve in animal preparations.

In the present form of the analysis given above, the phase response of

GABAergic interneurons in the medial vestibular nuclei during vestibular

nystagmus has been predicted for the first time.

A limitation of this approach is that the details of eye movements during

each phase of nystagmus are absent. The rhythm space method is most
concerned with the nonlinear switching between neural states, and the cyclical

patterns that result. The dynamics of the slow phase has been analyzed using

linear systems approaches (see, for example, ref. 25) and the present study

only addresses the rhythmic character of vestibular nystagmus.

The most important contribution of this approach will be for revealing

of synaptic connections and cellular properties in neural systems where exact
experimental data is lacking. For instance, the observation of phase relations

between recordings of bursts of action potentials from single cell recordings

can be compared with motor activity as in the previous section. New, unrecog-

nized synaptic connections to recorded neurons can be implied from these
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methods by deducing the necessary mechanisms for the generation of

observed rhythms.

ACKNOWLEDGMENTS

The author would like to thank Gin McCollum and Jan Holly for discus-

sions and many helpful suggestions on the manuscript. Dr. Holly helped

greatly in tailoring the notation to insure mathematical consistency. In addi-

tion, several ideas presented here were inspired by participation in the Santa

Fe Institute’ s Summer School on Complex Systems, 1994. This research was

supported by National Institutes of Health grant R01-DC02482 and a Legacy
Research grant awarded to G. McCollum.

REFERENCES

[1] Arieli, A., Shoham, D., Hildesheim, R., and Grinvald, A. (1995). Coherent spatiotemporal

patterns of ongoing activity revealed by real-time optical imaging coupled with single-

unit recording in the cat visual cortex, J. Neurophysiol. 73, 2072±2093.

[2] Baker, R., and Berthoz, A. (1974). Organization of vestibular nystagmus in oblique

oculomotor system, J. Neurophysiol. 37, 195±217.

[3] Calabrese, R. L., Angstadt, J. D., and Arbas, A. E. (1989). A neural oscillator based on

reciprocal inhibition, in Perspectives in Neural Systems and Behavior, Carew, T. J., and

Kelly, D. B., eds., Liss, New York, pp. 35±50.

[4] CarreÂ, B. (1979). Graphs and Networks, Oxford University Press, Oxford.

[5] Churchland, P. S., and Sejnowski, T. (1992). The Computational Brain, MIT Press,

Cambridge, Massachusetts.

[6] Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics, and induction,

Physica D, 75, 11±54.

[7] Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, Oxford University

Press, Oxford.

[8] Freeman, W. J. (1992). Tutorial on neurobiology: From single neurons to brain chaos,

Int. J. Bifur. Chaos 2, 451±482.

[9] Galiana, H. L., and Outerbridge, J. S. (1984). A bilateral model for central pathways in

the vestibuloocular reflex, J. Neurophysiol. 51, 210±241.

[10] Getting, P. (1989). Emerging principles governing the operation of neural networks, Annu.

Rev. Neurosci. 12, 185±204.

[11] Glass, L. (1974). Classification of biological networks by their qualitative dynamics, J.

Theor. Biol. 54, 85±107.

[12] Glass, L. (1975). Combinatorial and topological methods in nonlinear chemical kinetics,

J. Chem. Phys. 63, 1325±1335.

[13] Glass, L. (1977). Combinatorial aspects of dynamics in biological systems, in Statistical

Mechanics and Statistical Methods in Theory and Applications, Landman, U., ed., Plenum

Press, New York, pp. 585±611.

[14] Glass, L., and Young, R. (1979). Structure and dynamics of neural network oscillators,

Brain Res. 179 , 207±218.

[15] Green, A., and Galiana, H. L. (1996). Exploring sites for short-term vor modulation using

a bilateral model, Ann. N. Y. Acad. Sci. 781 , 625±628.



3068 Roberts

[16] Hartline, D. K. (1987). Plateau potential, in Encyclopedia of Neuroscience, Adelman, G.,

ed., Birkhauser, Boston, pp. 955±956.

[17] Johnson, B. R., and Hooper, S. L. (1992). Overview of the stomatogastric nervous system,

in Dynamic Biological Networks, Harris-Warrick, R. M., Marder, E., Selverston, A. I.,

and Moulins, M., eds., MIT Press, Cambridge, Massachusetts, pp. 1±30.

[18] Kling, V., and Szekely, G. (1968). Simulation of rhythmic nervous activities. i. Function

of networks with cyclic inhibitions, Kybernetik 5, 89±103.

[19] LlinaÂs, R., and Sasaki, K. (1989). The functional organization of the olivo-cerebellar

system as examined by multiple Purkinje cell recordings. Eur. J. Neurosci. 1, 587±602.

[20] McCulloch, W. S., and Pitts, W. (1942). A logical calculus of the ideas immanent in

nervous activity, Bull. Math. Biophys. 5, 115±133.

[21] Roberts, P. D. (1996). Classification of temporal patterns in dynamical biological networks,

Neural Comp. 10, 1831±1846.

[22] Roberts, P. D. (1997). Classification of temporal patterns in the stomatogastric ganglion,

Neurosci. 81, 281±296.

[23] Roberts, P. D., McCollum, G., and Holly, J. E. (1996). Cerebellar rhythms: Exploring

another metaphor, Behav. Brain Sci. 19, 471±472.

[24] Singer, W., and Gray, C. M. (1995). Visual feature integration and the temporal correlation

hypothesis, Annu. Rev. Neurosci. 18, 555±586.

[25] Smith, H. L. H., and Galiana, H. L. (1991). The role of structural symmetry in linearized

ocular reflexes, Biol. Cybernet. 65, 11±22.


